222 research outputs found

    Epitaxy and Step Structures on Semiconductor Surfaces

    Get PDF
    Contains reports on one research project and a list of publications.Joint Services Electronics Program Contract DAAL03-92-C-000

    Epitaxy and Step Structures on Semiconductor Surfaces

    Get PDF
    Contains description on one research project.Joint Services Electronics Program Contract DAAL03-89-C-000

    Step Structures and Epitaxy on Semiconductor Surfaces

    Get PDF
    Contains description of one research project, reports on two research projects and a list of publications.Joint Services Electronics Program Contract DAAL03-92-C-000

    Phonon Density of States and Anharmonicity of UO2

    Get PDF
    Phonon density of states (PDOS) measurements have been performed on polycrystalline UO2 at 295 and 1200 K using time-of-flight inelastic neutron scattering to investigate the impact of anharmonicity on the vibrational spectra and to benchmark ab initio PDOS simulations performed on this strongly correlated Mott-insulator. Time-of-flight PDOS measurements include anharmonic linewidth broadening inherently and the factor of ~ 7 enhancement of the oxygen spectrum relative to the uranium component by the neutron weighting increases sensitivity to the oxygen-dominated optical phonon modes. The first-principles simulations of quasi-harmonic PDOS spectra were neutron-weighted and anharmonicity was introduced in an approximate way by convolution with wavevector-weighted averages over our previously measured phonon linewidths for UO2 that are provided in numerical form. Comparisons between the PDOS measurements and the simulations show reasonable agreement overall, but they also reveal important areas of disagreement for both high and low temperatures. The discrepancies stem largely from an ~ 10 meV compression in the overall bandwidth (energy range) of the oxygen-dominated optical phonons in the simulations. A similar linewidth-convoluted comparison performed with the PDOS spectrum of Dolling et al. obtained by shell-model fitting to their historical phonon dispersion measurements shows excellent agreement with the time-of-flight PDOS measurements reported here. In contrast, we show by comparisons of spectra in linewidth-convoluted form that recent first-principles simulations for UO2 fail to account for the PDOS spectrum determined from the measurements of Dolling et al. These results demonstrate PDOS measurements to be stringent tests for ab initio simulations of phonon physics in UO2 and they indicate further the need for advances in theory to address lattice dynamics of UO2.Comment: Text slightly modified, results unchange

    Epitaxy and Step Structures on Semiconductor Surfaces

    Get PDF
    Contains report on one research project.Joint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-000

    Phonon anharmonicity and negative thermal expansion in SnSe

    Full text link
    The anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is linked to the electronic structure.Comment: 14 pages, 12 figure

    MCViNE -- An object oriented Monte Carlo neutron ray tracing simulation package

    Get PDF
    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is a versatile Monte Carlo (MC) neutron ray-tracing program that provides researchers with tools for performing computer modeling and simulations that mirror real neutron scattering experiments. By adopting modern software engineering practices such as using composite and visitor design patterns for representing and accessing neutron scatterers, and using recursive algorithms for multiple scattering, MCViNE is flexible enough to handle sophisticated neutron scattering problems including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can take advantage of simulation components in linear-chain-based MC ray tracing packages widely used in instrument design and optimization, as well as NumPy-based components that make prototypes useful and easy to develop. These developments have enabled us to carry out detailed simulations of neutron scattering experiments with non-trivial samples in time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.Comment: 34 pages, 14 figure

    Spin dynamics in antiferromagnetic oxypnictides and fluoropnictides: LaMnAsO, LaMnSbO, and BaMnAsF

    Get PDF
    Inelastic neutron scattering (INS) from polycrystalline antiferromagnetic LaMnAsO, LaMnSbO, and BaMnAsF are analyzed using a J(1)-J(2)-J(c) Heisenberg model in the framework of the linear spin-wave theory. All three systems show clear evidence that the nearest- and next-nearest-neighbor interactions within the Mn square lattice layer (J(1) and J(2)) are both antiferromagnetic (AFM). However, for all compounds studied the competing interactions have a ratio of 2J(2)/J(1) \u3c 1, which favors the square lattice checkerboard AFM structure over the stripe AFM structure. The interplane coupling Jc in all three systems is on the order of similar to 3 x 10(-4)J(1), rendering the magnetic properties of these systems with quasi-two-dimensional character. The substitution of Sb for As significantly lowers the in-plane exchange coupling, which is also reflected in the decrease of the Neel temperature, T-N. Although BaMnAsF shares the same MnAs sheets as LaMnAsO, their J(1) and J(2) values are substantially different. Using density functional theory, we calculate exchange parameters J(ij) to rationalize the differences among these systems
    corecore